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SUMMARY 

A hodograph-based method, originally developed by the first author for the design of shock-free aerofoils, 
has been modified and extended to allow for the design of shock-free compressor blades. In the present 
procedure, the subsonic and supersonic regions of the flow are decoupled, allowing the solution of either 
an elliptic or a hyperbolic-type partial differential equation for the stream function. The coupling of both 
regions of the flow is carried out along the sonic line which adjoins both regions. For the subcritical portion 
of the flow considered here, the pressure distribution is prescribed in addition to the upstream and 
downstream flow conditions. For the supercritical portion of the flow, the stream function on the sonic 
line is given instead of the supercritical pressure distribution which is found as part of the solution. In the 
special hodograph variables used, the equation for the stream function is solved iteratively using a 
second-order accurate line relaxation procedure for the subsonic portion of the flow. For the supercritical 
portion of the flow, a characteristic marching procedure in the hodograph plane is used to solve for the 
supersonic flow. The results are then mapped back to the physical plane to determine the blade shape and 
the supercritical pressures. Examples of shock-free compressor blade designs are presented. They show 
good agreement with the direct computation of the flow past the designed blade. 
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INTRODUCTION 

The design of light and efficient turbomachinery components is currently receiving considerable 
attention in the aerodynamic community. The recent trends towards obtaining higher blade 
loading has driven the operating conditions of modern compressors and turbines into the 
transonic regime. Unfortunately, once local regions of the internal flow become supersonic, 
complex shock patterns are likely to occur with the attendant wave drag and shock-induced 
boundary-layer separation losses. Consequently, noise and vibration levels increase drastically 
and an overall rapid decline of the aerodynamic efficiency of the cascade is observed. A shock-free 
flow would, of course, be desirable, as it avoids these losses. In this special class of flows, the 
fluid decelerates from a supersonic Mach number to a subsonic Mach number smoothly over 
the surface of the blade. The unique geometry of the blade prevents the coalescence'*2 of the 
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reflected (of the sonic line) weak compression Mach waves which would otherwise lead to a 
finite terminal shock wave. Therefore, careful blade 'profiling' or shaping is required in this 
velocity range, especially for the decelerated compressor cascade flow. 

Although major progress has been made in the analysis (direct problem) of transonic cascade 
f l o ~ s , ~ - ~  only a limited number of global design (inverse problem) techniques, to date, have 
been developed for obtaining shock-free cascade flows. The method of complex characteristics 
developed by Garabedian7v8 and later applied by Korng for the design of shock-free blades is 
mathematically elegant. However, even in its user-orientated version, practical use of the method 
requires much experience and mathematical insight. Another indirect approach was developed 
by Sobieczky.'og'l Here, the rheoelectric analogy to the compressible flow equations was used 
to define a number of shock-free cascades. This unique method has not yet found wide acceptance 
in practical blade design applications owing to its complex hardware requirements. An 
intermediate position between analysis and design (i.e. semi-inverse) is taken by the fictitious gas 
approach developed by Sobieczky. '' This approach, first adopted by Dulikravich and 
S~bieczky, '~. '~ and later by Beauchamp' and many others,'6-'8 provides an inverse treatment 
only in the supersonic part of the blade contour. That is, while fixing the known subsonic 
boundary of the blade, the supersonic boundary is redesigned to eliminate any existing shock 
waves. 

The design procedure developed here is an improvement of Sobieczky's rheoelectrical analogy 
Since the use of an electrical setup, of course, did not provide for economical use 

of the method, it did lead to a greater understanding of this indirect approach. By replacing the 
electric analogue by a fast elliptic solver (HassanIg and Hassan et al."), we could use all the 
experience of the analogue method concerning boundary conditions that result in interesting 
aerofoil and blade designs. The procedure requires less than two minutes of IBM 3081 CPU 
time for the design of a subcritical or a supercritical blade section. Though the method is limited 
to two-dimensional flow, it does allow the user to specify a desired pressure distribution and 
achieve it with little difficulty through an iterative process. 

MATHEMATICAL FORMULATION 

We consider steady, two-dimensional, compressible, irrotational flow of a perfect gas. The 
governing equations of motion are 
continuity 

irrotationality 
v-pq  = 0, 

v x q = o ,  
and - _  -constant. 

PY 
(3) 

Equations (1) and (2) are identically satisfied by introducing the usual compressible stream 
function * and the velocity potential 4 defined through the following relations, 

PU = *, = & 9  

p v  = - = 4,. (4) 

Through cross-differentiation, equations (4) can thus be reduced to a single equation in either 
4 or $, viz., 
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(6) 
with 

It can be easily shown that equations (5) and (6) are elliptic for M < 1 (subsonic flow), hyperbolic 
for M > 1 (supersonic flow), and parabolic where M = 1 (sonic flow). To solve either of 
equations (5) or (6), two boundary conditions must be provided. The first represents the behaviour 
of the flow far ahead and behind the blade, and the second represents the flow tangency condition 
(vanishing normal velocity) on the blade surface. In the inverse procedure presented here, the 
pressure distribution is used as an input rather than the blade physical co-ordinates, and our 
goal is to find the shape that the blade must have to achieve this input pressure distribution. 
Accordingly, for the inverse problem, neither a Neumann boundary condition for 4 nor a 
Dirichlet boundary condition for $ can be given on the blade surface since its location is unknown 
a priori. This is in contrast to direct analysis methods where the blade geometry is known prior 
to the computational procedure. The problem of a prescribed pressure on a given blade 
configuration is ill-posed.2' Here we prescribe a general pressure distribution and find the blade 
geometry that has a pressure distribution very close to this target pressure distribution. 

P = P ( d ,  4 = IV4L 

THE HODOGRAPH TRANSFORMATION 

For two-dimensional irrotational flow, the non-linear equations (5) and (6) for steady flow can 
be rendered linear by changing the role of the dependent and independent variables. We introduce 
the complex velocity 

u - iu = qe-ie (7) 
with u, u, q and 0 being functions of a complex variable 

z = x + iy. 
Equations (4), (7) and (8) are then combined to yield the following total differential relation, viz., 

d 4  + i-d$ = qe-"dz (9) 
1 

P 
From equation (9) with q and 8 as independent variables, and since p = p(lV+(), we find 

Differentiating the first of equations (10) with respect to 9 and the second with respect to q and 
then equating real and imaginary parts, we obtain the hodograph (4-8) equations, viz., 

a* 
M2)-. ae 

In the present design procedure, it is essential to introduce the Prandtl-Meyer function 
v, defined by 
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v =  s” Jpiq 
4* 

M 

in place of the velocity q in equations (1 l), which then take their canonical form and become 

Here the signs refer to supersonic and subsonic conditions respectively and 

K ( v )  = KCV(M)I = [I1 - ~ 2 1 1 ” 2 / P C ~ ( ~ ) 1 .  
A typical physical and hodograph plane representation (with v and 8 as hodograph variables) 
of the flow field is sketched in Figure 1 and 2. The blade maps into a closed curve containing 
the stagnation point S at infinity and the sonic line at points a, b. The upstream and downstream 
singularities of the flow map into points I ,  and I, respectively. The analytical structure of $ 
near v = 0 and a smooth curvature of the blade at the sonic line require the local structure of the 
blade contour near the B-axis as sketched in Figure 3. This weakly singular behaviour (obtained 
from a limiting study of equations (13) as v +O) is of importance in the solution of the boundary- 
value problem, with $ given along the elliptic boundary (shaded line in detail of Figure 3). The 
region of the flow in Figure 1, bounded by the dotted contour and the blade, represents a region in 

Figure 1. Sketch ofshock-free flow past a rectilinear cascade; the dotted boundary 1-2-3-4- .... etc. represents the physical 
domain of interest 
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M < I  

Figure 2. Hodograph plane representation of a single blade in a rectilinear cascade 

Figure 3. Asymptotic behaviour near points a or b on the sonic line in the hodograph plane 

which every point has a velocity and flow angle equal to that of some other point outside this 
region, e.g. qe = q, and 8, = 8,. Therefore, points e and f will correspond to the same point in the 
hodograph plane, which must be considered as a Riemann surface consisting of two sheets with a 
branch cut (lines dn, cn) connecting them. The local nature of this flow was studied by Lighthill” 
in his hodograph study of compressible flows past lifting aerofoils. 

Since equations (13) are linear in the v-8 hodograph plane, there is usually no particular 
difficulty in finding solutions to them, by numerical methods if necessary. However. the presence of 
the second sheet of the two-sheeted Riemann surface and the a priori unknown location of the 
blade surface represent major obstacles in solving the governing equations in this plane. From 
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equations (13) it can also be shown that the second-order derivatives for both 4 and i,b form 
the Laplacian or the wave operator, depending on whether or not the flow is subsonic or 
supersonic. Thus the equations for the subsonic portion of the flow are invariant in their general 
form under a conformal transformation. 

DECOUPLING O F  THE SUBSONIC FLOW DOMAIN 

We proceed by assuming a conformal map of the subsonic portion of the two-sheeted Riemann 
surface of Figure 2 into the unit circle of Figure 4. (The double-connected infinite domain is 
mapped into a finite simply connected domain through an exponential mapping which is then 
followed by a square root mapping to unfold the Riemann sheets.) Here, part of the circumference 
of the unit circle corresponds to the blade surface which is wetted by subsonic flow; the remaining 
part corresponds to the sonic line. The segment comprising the sonic line, w, < w < ob, is chosen 
and the Mach number M (or equivalently the pressure) on the subsonic part of the blade is 
prescribed. On the sonic line segment the Mach number is equal to one. Because Bernoulli's 
equation provides a correspondence between the values of p and the local sound speed, we may 
formulate the inverse-design problem in terms of either M or p ,  and our choice of M is only a 
matter of convenience. A typical choice of M for a supercritical blade with a cusped trailing 
edge is illustrated in Figure 5. 

With the Mach number given on the boundary of the unit circle, and with the subsonic portion 
of the flow inside the circle, we take advantage of the fact that the mapping to the <,-plane is 
conformal. Thus, the Prandtl-Meyer function v and the flow deflection angle 8 are conjugate 
harmonics, i.e., 

F(<,) = v + if3 
or 

v2 v(50) = 0, 

v2e(<o) = 0. 

Figure 4. Cascade subsonic-sonic boundary in the to plane (stagnation point S, trailing edge T, upstream singularity I , ,  
downstream singularity Z2) 
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Figure 5. Typical input subsonic-sonic Mach number distribution 

Here, F(5,) is the mapping function and <, = reiw, with r and o being the radial and angular 
co-ordinates measured in the t0-plane. Boundary conditions for equation (14) are provided 
through the use of equation (12) relating v and M ;  that is, knowing the Mach number distribution 
on the unit circle, we calculate v employing equation (12). We then solve Laplace's equation for 
v inside the unit circle using Fourier series, which accordingly determines the flow deflection 
angle 0 to within an arbitrary constant. However, the Prandtl-Meyer function v is logarithmically 
singular in q (v cc log (4 ) )  at the stagnation point S ,  which for convenience is positioned at 5 ,  = - 1 
in the <,-plane. Therefore, in order to solve the boundary value problem for v using Fourier 
series we need first to subtract the logarithmic behaviour at point S.  This is done as follows: 

let 

W5,) = W O )  - Im { h ( 5 0  + 1 1 1 9  

then equations (14) and (1 5 )  become 
VZC(<,) = 0 

VH(<,) = 0 (17) 
Here Re{ .-.} and Im(...} are the real and imaginary parts of log(<, + 1) respectively. 
Equation (16) is then solved inside the unit circle using a discrete Fourier series subject to the 
following boundary condition, 

C(r= l,o)=v(l,w)-Re{log(e'"+ l)}. 

Having obtained the solution for G(r,o) in the unit circle, we then add back the logarithmic 
singularity to preserve the singular behaviour of v at the stagnation point S .  

Reformulating the definitions for the partial derivatives in equations (13) in terms of r and o 
we obtain 

and 
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Eliminating 4 through cross-differentiation of equation (18), we find the governing equation 
for the stream function +, viz., 

0 S a g b  T @  

Here, K is a function of M ,  M is a function of v through equation (12), and 

In the present formulation, equation (19) is the <,-plane counterpart of the physical-plane 
equation (5 )  for the stream function. The transformation to hodograph variables v, 8, followed 
by a conformal transformation to the c0-plane, results in a linear second-order partial differential 
equation (Poisson Equation) for +. In addition to this linearity, the major advantages of these 
two transformations are the unfolding of the two-sheeted hodograph surface to a single sheet, 
and the representation of the subsonic-sonic boundary of the unknown blade by a unit circle. 
However, these advances are not without attendant complexities, albeit minor ones. These 
difficulties include the singularity in f ( M )  in equation (20) at M = 1, and the presence of points 
I , , I ,  which represent the upstream and downstream singularities of the flow inside the unit 
circle depicted in Figure 4. The first of these difficulties is circumvented by assuming that the 
Mach number on the sonic line is slightly less than 1, e.g. Msonic = 0.995, and using the local 
asymptotic behaviour of + to extend the results to M = 1.  That is, in a limiting process as M + 1 
we conclude from the asymptotic forms of equations (12) and (19) that t,br a v -  1/3 along the sonic 
line. The second of these difficulties is circumvented through a numerical co-ordinate transfor- 
mation of the (,-plane into the rectangular computational (s, t )  plane shown in Figure 6. To 
exclude the two singularities at points I , ,  I, from the (,-plane, referring to Figure 4, we introduce 
two branch cuts; the first 3-4-5-6 connecting the two circles with radii E and centres at points 
I , ,  I,, and the second connecting the circle with centre at I ,  and any point on the subsonic 
blade surface (i.e. on the unit circle). To maintain consistency with the physical boundary 
conditions, periodic numerical boundary conditions are imposed along the branch cut 1-2,7-8. 
It is noteworthy to mention here that in a direct procedure where the blade shape is prescribed, 
the second branch cut would be equivalent to an initial guess made for the wake position. 
Conversely, in the present formulation, since the blade shape is unknown a priori, a branch cut 
connecting any point on the subsonic surface of the blade (not necessarily the trailing edge) 
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to the outflow boundary is used; see Figure 1. The resulting simply connected domain 
S-1-2-3-4-5-6-7-8-b-a-S is then numerically mapped to the rectangular computational s-t 
plane (0 < s d 271,O < t d 1) depicted in Figure 6. The non-orthogonal boundary-fitted grid is 
generated using the Thompson, Thames, Mastin (TTM) method2, which employs the following 
inhomogeneous Laplace equations as the generating system, 

S,, + sip = P(s,  t), 
t,, + tgi = Q(s, t). 

Here, X = r cos (o), j = r sin (o), and P ,  Q are arbitrary functions which provide means for 
controlling the resolution of the resulting mesh system. With s and t as new independent variables, 
we obtain the following governing equation for $(s, t), viz., 

$ss + 4, t)*tt = b(s, t)$, + c(s, t )$t  + 4% w s t .  (22) 
In equation (22), a(s, t )  and d(s, t )  are purely functions of the local Jacobian, J = a(s, t)/a(X, j ) ,  
and metrics of the transformation. The functions b(s, t )  and c(s, t )  are also functions of the local 
Jacobian, metrics of the transformation as well as the local Mach number M .  

NUMERICAL BOUNDARY CONDITIONS 

On the blade surface wetted by subsonic flow we have 

$ (s, 0) = 0 s b  3 s 2 s,. 

On the remaining portion of the lower boundary, i.e. the sonic line, an arbitrary distribution 
for the stream function $ is prescribed, viz., 

$(& O )  = $sonic = g(s) sb d < 
The compressible upstream and downstream stream function distributions 
their incompressible counterparts Y,, , Y12 by the following relations, 

G12 are related to 

Here, 

and 

1 
* I 2  = k(v(Mz))y'2 
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In equations (24), M ,  and M ,  are the upstream and downstream Mach numbers respectively, 
el,  8, are the upstream and downstream flow deflection angles and cr is the solidity of the 
cascade (i.e. gap-to-chord ratio). It is noteworthy to mention that equations (23) are a consequence 
of the fact that, at points I , ,  I ,  which represent the upstream and downstream singularities in 
the t,-plane, equations (18) reduce to the familiar Cauchy-Riemann equations (or incompressi- 
ble flow equations) expressed in polar co-ordinates. Thus the complex potentials defining the 
upstream and downstream stream function distributions are those for an incompressible flow 
'PI ,  or Y,, which is related to its compressible counterpart $11 or t+hI2 through equations (23). 
Equations (23) in conjunction with the solution to equations (21) are then employed to express 
the upstream and downstream stream function distributions in the s-t plane, Figure 6. The 
condition of periodicity is imposed on the computational plane image of the branch cut 1-2, 
7-8 shown in Figure 4. Continuity of the stream function $ across the branch cuts 3-4, 5-6 
requires that $(s, 1) = $(2n - s, 1). This condition is satisfied by updating each $ value on the 
t = 1 line as soon as its corresponding value is altered by the line relaxation calculation. At 
points I , ,  I ,  the stream function is singular. To remove this singular behaviour we let 

+ = $1 + $2 (244 

where $, is the singular portion due to sources and vortices at point I , ,  I , ,  and $, is a regular 
(non-singular) stream function. In the present formulation, $, is obtained through the use of 
equations (23), i.e. 

$1  = Im ( $ 1 ,  + $I2] 
where Im{ ...} is the imaginary part of $,2 .  The Jacobian of the numerical mapping 
J is also singular at points I , ,  I ,  in the s-t plane. To remove this singular behaviour of J we 
define a new Jacobian J such that 

J=JJcosh ( l  - ~ ) - c o s ( ~ s )  (24b) 

Upon substitution of equations (24a) and (24b) into equation (22) we obtain a regularized 
two-dimensional stream function equation in terms of $ 2 ,  J and the derivatives of $, which 
are easily found from equations (23). Since the stream function is undefined to within a constant 
we set (n, 1) = 0. To avoid special handling of the regularized stream function 
at I , ,  we cohstruct a grid system which excludes this point as a node.3 At this juncture, it is 
important to emphasize that the physical plane image of the branch cut 3-4-5-6 does not 
represent two streamlines of the resulting flow; instead, two boundaries along which there is a 
variation in the stream function values are obtained. 

The boundary value problem for $, is now complete, and equation (22), now expressed in 
terms of $,, is solved iteratively using a second-order accurate line relaxation procedure. The 
sweep direction is indicated by the arrows in Figure 6. The stagnation streamline leaves the 
contour of the blade at a cusped or wedged trailing edge. This defines, in direct analysis, the 
amount of circulation around the blade and the location of the stagnation point near the leading 
edge. For an indirect method such as the present one, the situation is exactly the reverse: since 
the (mapped) stagnation point location is given, we have to vary either M ,  or 8, for a fixed 
M I ,  and solidity cr. In the present formulation, M ,  is fixed and 8, is initially guessed and 
then left free. Hence its correct value is determined as part of the solution. The mapped location 
Tof the trailing edge results from this adjustment and the trailing edge shape is then cusped. 
In the computational plane the stagnation streamline leaves the blade contour at point T at a 
90" angle. 

The results for the gradients $Js, 0) and $t (s ,  0) along the elliptic boundary consisting of the 
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subsonic portion of the blade and the sonic line are then used in finding the inverse-map to the 
physical plane, equation (9), which can be written as 

1 1 
4 P 
1 1 
4 P 

dx(s, 0) = -{K(v)cos(O)@,(s, 0) - -sin(O)+Js, 0)} ds, 

dy(s,O) =-(K(v)sin(O)$,(s,O) + -cos(O)$,(s,O)} ds. 

Equation (25) are then numerically integrated along the subsonic-sonic boundary of the 
computational plane (t = 0,O < s < 271) starting from the trailing edge T on the blade's lower 
surface moving toward the stagnation point s, sonic points a, b, and finally ending at the trailing 
edge T on the blade's upper surface, i.e., 

(25) and 

x = x0 + dx(s), 
0 < s < 27c. (26) 

s:, 
Y = Yo + s' dy(s), 

ST 

The resulting subsonic-sonic line configuration is then checked to see if it has a reasonable 
thickness distribution (i.e. reasonable trailing edge gaps and no contour crossings). If not, then the 
input design parameters must be altered and the design procedure repeated. When a suitable 
subsonic-sonic line configuration is found, the first of equations (18) is numerically integrated to 
find the potential distribution along the elliptic boundary, i.e., 

Results obtained from the solution of the subsonic flow region on the sonic line (i.e. 4sonic, xsOnic, 
ysonic) are then used in addition to the prescribed sonic line stream function as initial values 
for solving the supersonic flow (considering the + sign in equations (13)) in the hodograph plane 
using the method of characteristics described below. 

SUPERSONIC FLOW DOMAIN 

It follows from equations (13) for the flow in the embedded supersonic region that both t,b and 4 
satisfy the linear wave equations 

and 

h v -  4 e e =  -K(v )  

The above equations have two real characteristics whose slopes 

dv 
-= f 1 .  
d0 

Introducing the characteristic co-ordinates 5, q defined by 

5 = v + 8 ,  
q = v - e ,  

(29) 

are given by 

(30) 
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and reformulating the partial derivatives in equations (13) in terms of the new co-ordinates, we 
obtain 

and 

Equations (32) may also be expressed in total differential form as 
on 5 = constant 

and on q = constant (33) 

With the stream function $sonic (0) and the potential 4sonic (0) data known on the sonic like with 
co-ordinates x,,,,~~ (0) and ysonic (0), we proceed to solve equations (33), which hold along the two 
families of characteristics, using a step-by-step numerical scheme. The basic concept of this scheme 
is the following: 

Through each point A, B, C, D, E, F of the sonic line (line A F  in Figure 7 two Mach lines pass, 
one of the first family, q = constant (a,, b,  , cl,. . . J,), and one of the second family, 5 = constant 
(a2, b,, c,, . . . ,f,). Since the flow properties at the points of the line A F  are known, the constants of 
equations (33) for each characteristic line a, . . .fl , a,,. . .f,, at each point of AF, are also known. 
Consequently, equations (33) applied along two characteristics of opposite families, e.g. b,  and a, 
of Figure 7, give two equations relating bG to t+hG. These can be solved to obtain 4 and $ at point G 
as functions of 4 and Ic/ at the points A and B, viz., 

W 
J a z 8 a 

PRANDTL- MEYER 
FUNCTION 

Figure 7. Computation of the supersonic flow field in the hodograph plane using the method of characteristics 
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In equations (34), if we think of v as a specified function of 5 and q on a rectangular grid, the 
coefficient K(v)  may be approximated by average values such that the numerical step-by-step 
scheme becomes second-order accurate in the mesh size, h. The flow deflection angle 8, and the 
prandtl-Meyer function v, are evaluated at the grid nodes using equations (31). 

Having solved for the flow properties at all grid nodes, we then proceed to search for points of 
zero streamline values as they represent points on the blade’s upper surface. 

The inverse transformation from the hodograph v-8 plane to the physical x-y plane is given by 
equation (9), which could be written at every grid point as 

cos(8) sin(8) 
4 P4 

sin(8) cos(8) 
4 P4 

dX=-d4--d$, 

dy=- d8 + -d$. 

The Jacobian of the transformation is 

(35) 

Using equations (13) to eliminate 4v and 4fJ in terms of $,,, t,bfJ, we find that for supersonic flow 

which indicates the possibility of a vanishing Jacobian whenever I$el = I$J. It can be easily shown 
from equations (32) that this condition is satisfied whenever a $ = constant line is tangent to the 
characteristics in the hodograph v-8 plane, i.e. whenever $, = 0 or = 0. The locus of points in the 
hodograph plane for which J = 0 is known as a limit line. In the physical plane the image of such a 
line is a cusped curve along which the physical surface can be thought to be folded upon itself.24 
Such limit lines indicate the inconsistency of the sonic line data with shock-free flow. Thus, they are 
only acceptable if they occur below the blade’s upper surface. However, if they occur above or on 
the blade’s upper surface, the sonic line data must be altered by adjusting the input subcritical 
pressure or the sonic line stream function distribution or both, and the design procedure repeated. 

COMPUTER PROGRAM PACKAGE 

The computer program package consists of eighteen FORTRAN IV subroutines performing 
calculations and data transfer. The package makes use of two permanent files for results to be 
retained and one file for input data. For a specific blade design, the program has to be operated in 
the following manner: 

1. Using the input Mach numbers MI,  M , ,  flow deflection angle 8,, subsonic-sonic Mach 
number distribution, sonic line stream function distribution and an initial guess for 02, 
we obtain a subsonic-sonic boundary configuration which is stored on one of the permanent 
files accessible to the code. 

2. To reduce the x-gap at the trailing edge of the resulting blade (which is usually open), we alter 
slightly the levels of the input Mach number distribution, say on the upper or lower surface of 
the blade. This in turn has the direct effect of changing locations of the singularities at I, and 
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I ,  in the t,-plane which consequently result in the reduction of the x-gap to a preset value, 
e.g. 

3. To reduce the y-gap at the trailing edge of the resulting blade, we alter the slopes of the input 
Mach number in the vicinity of the stagnation point S.  That is, steeper slopes usually result in 
a blade with a smaller leading edge radius and hence a smaller maximum thickness and 
eventually a smaller y-gap. 

4. Once an acceptable (i.e. no contour crossings) subsonic-sonic boundary configuration is 
obtained, the supersonic flow field computation is then carried out to determine the blade co- 
ordinates under the sonic line. If a limit line is encountered in the supersonic flow domain, 
steps 1 to 3 above are repeated for a modified input sonic line stream function distribution. 

COMPUTATIONAL RESULTS AND DISCUSSION 

It should be mentioned here that the primary objective of this research was to demonstrate through 
many numerical examples that the method accurately predicts the blade geometry which 
corresponds to an input target pressure. This objective, however, dictated that we compare our 
results with those obtained from a direct computation of the flow past the designed blade rather 
than with those obtained from an alternative design method. The analysis code used in this study is 
that of Reference 5 which is based on the numerical solution of the full potential equation 
expressed in conservative form. 

Three examples illustrating the performance and application of the design procedure using an 
IBM 3081 computer are given in Figures 8,9 and 10. Numerical computations were performed on a 
200 x 64 mesh in the s-t plane requiring a maximum CPU time of 2 minutes. The preset values for 
the x and y trailing edge gaps were and lop2 respectively. With a trailing edge gap, the 
resulting blade configuration lends itself to viscous boundary layer corrections when displacement 
effects are later i n c o r p ~ r a t e d . ~ ~ . ~ ~  

The first example is that of a shock-free compressor stator blade (solidity = 1-0) with a cusped 
trailing edge. The inflow Mach number MI,  outflow Mach number M,, and flow deflection angle 
8, are 0.75, 0.652 and - 35" respectively. For this blade, the converged solution results in an 
outflow turning angle 8, of 3.17". For this example, Figure 8 illustrates the input subsonic-sonic 
Mach number distribution, the equivalent pressure (C,) distribution, and the resulting blade 
geometry. A comparison with results obtained from the direct computation of the flow field, using 
the designed blade geometry as input, is also illustrated in Figure 8. The agreement between our 
results and those obtained from the direct computation of the flow is very good in the subsonic 
regions and fair in the supersonic region. The slight disagreement in the pressure distributions in 
the vicinity of the trailing edge is undoubtedly related to the size of the y-gap at this location. This 
discrepancy could be further reduced by reducing the y-gap tolerance (e.g. which is preset in 
the inverse code. This, however, results in a larger number of inverse iterations (almost twice the 
number required for a gap tolerance of lo-') and hence increases the CPU time. 

Experience has shown that at least two modifications of the input Mach number distribution at  
the trailing edge are required to obtain a reasonable (i.e. no contour crossings) blade configuration. 
It is noteworthy to mention that the slightly different Mach number distributions do, of course, 
give two slightly different shock-free blade designs. That is, only one blade configuration is 
obtained for a given Mach number distribution. In our procedure, Volpe and Melnik's'l first 
constraint on the existence of a solution to the inverse problem is implicitly satisfied since we do 
allow for slight variations in the prescribed input pressure distribution. 

Figure 9 illustrates the input subsonic-sonic Mach number distribution for a compressor stator 
blade (solidity = 0.85) with a cusped trailing edge. The prescribed inflow conditions are M ,  = 0.75, 
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Figure 8. Shock-free compressor blade and its corresponding Mach number and pressure distributions (MI = 0.750, 

M, = 0.652, 8, = - 35.0", 8, = - 3.17", solidity = 1.0) 
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Figure 9. Shock-free compressor blade and its corresponding Mach number and pressure distributions (M, = 0.750, 
M, = 0.600, 8, = - 30.0", 0, = - 7.82", solidity = 0.85) 
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Figure 10. Shock-free compressor blade and its corresponding Mach number and pressure distributions (MI = 0.680, 
M, = 0.570, el = - 40C, e2 = - 5624", solidity = 0.792) 

and 8, = - 30". The converged inverse solution results in an outflow turning angle 6, = - 7.82" if 
the outflow Mach number is set at M ,  = 0.60. The resulting blade geometry and a comparison with 
the results obtained from the direct computation of the flow past the designed blade are also shown 
in Figure 9. Again, the slight disagreement which is noticed between the C ,  distributions in the 
trailing edge region is attributed to the size of the existing y-gap at the trailing edge of the designed 
blade. 

The final example represents the design of a compressor stator blade (solidity = 0.791) with a 
cusped trailing edge. The prescribed design conditions are: at inflow MI = 0.68, 8, = - 400", at 
outflow M ,  = 037. The flow deflection angle at outflow 8, was found to be - 5.62" as part of the 
numerical solution. For this example, Figure 10 illustrates the input subsonic-sonic Mach number 
distribution, the equivalent pressure (C,) distribution, and the resulting blade geometry. A 
comparison of the C ,  distribution with that obtained from the direct computation of the flow past 
the designed blade is also given in Figure 10. 

CONCLUDING REMARKS 

An inverse procedure has been developed for the global design of shock-free compressor cascades. 
The procedure is as simple as possible from a user's point of view and merely requires as input a 
pressure distribution, a sonic line stream function distribution, in addition to three of the design 
conditions representing the inflow and outflow. Although the method has some limitations, most 
notably in its application to choked flows, it is expected to yield good designs in many practical 
cases. Moreover, although the results are given for inviscid flow, the same procedure can be 
employed iteratively with a boundary-layer calculation (using blade profiles with an open trailing 
edge) in order to achieve viscous blade designs. Although this paper concentrates on the design of 
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compressor blades, the procedure is quite general and is currently being used in the design of 
shock-free turbine blades. 
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